The General Solutions of Linear ODE and Riccati Equation
نویسنده
چکیده
This paper gives out the general solutions of variable coefficients Linear ODE and Riccati equation by way of integral series E(X) and F (X). Such kinds of integral series are the generalized form of exponential function, and keep the properties of convergent and reversible.
منابع مشابه
new analytical method based on Riccati equation for finding Soliton solutions of Nonlinear Lakshmanan-Porsezian-Daniel (LPD) equation
In this present study analytical method based on Riccati Equation as for converting the Nonlinear Lakshmanan-Porsezian-Daniel (LPD) equation into the nonlinear ODE and finding soliton solutions of this sustem discused. Obtaining solutions are new and obtained from wave transformation. The obtained results show that the presented method is effective and appropriate for solving nonlinear differen...
متن کاملA Solution of Riccati Nonlinear Differential Equation using Enhanced Homotopy Perturbation Method (EHPM)
Homotopy Perturbation Method is an effective method to find a solution of a nonlinear differential equation, subjected to a set of boundary condition. In this method a nonlinear and complex differential equation is transformed to series of linear and nonlinear and almost simpler differential equations. These set of equations are then solved secularly. Finally a linear combination of the solutio...
متن کاملExact solutions of (3 +1)-dimensional nonlinear evolution equations
In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.
متن کاملSolutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملThe Riccati Sub-ODE Method For Fractional Differential-difference Equations
In this paper, we are concerned with seeking exact solutions for fractional differential-difference equations by an extended Riccati sub-ODE method. The fractional derivative is defined in the sense of the modified Riemann-liouville derivative. By a combination of this method and a fractional complex transformation, the iterative relations from indices n to n ± 1 are established. As for applica...
متن کامل